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Fig. 1. Gradient-based optimization results. The stone skipping task with our differentiable SPH-based fluid-rigid coupling simulator. We optimize the initial
linear and angular velocities of the stone to make it pass through the target red ring after bouncing.

Differentiable physics simulation has shown its efficacy in inverse design
problems. Given the pervasiveness of the diverse interactions between fluids
and solids in life, a differentiable simulator for the inverse design of the mo-
tion of rigid objects in two-way fluid-rigid coupling is also demanded. There
are two main challenges to develop a differentiable two-way fluid-solid cou-
pling simulator for rigid body control tasks: the ubiquitous, discontinuous
contacts in fluid-solid interactions, and the high computational cost of gradi-
ent formulation due to the large number of degrees of freedom (DoF) of fluid
dynamics. In this work, we propose a novel differentiable SPH-based two-
way fluid-rigid coupling simulator to address these challenges. Our purpose
is to provide a differentiable simulator for SPH which incorporates a unified
representation for both fluids and solids using particles. However, naively
differentiating the forward simulation of the particle system encounters
gradient explosion issues. We investigate the instability in differentiating
the SPH-based fluid-rigid coupling simulator and present a feasible gradient
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computation scheme to address its differentiability. In addition, we also
propose an efficient method to compute the gradient of fluid-rigid coupling
without incurring the high computational cost of differentiating the entire
high-DoF fluid system. We show the efficacy, scalability, and extensibility
of our method in various challenging rigid body control tasks with diverse
fluid-rigid interactions and multi-rigid contacts, achieving up to an order
of magnitude speedup in optimization compared to baseline methods in
experiments.

CCS Concepts: • Computing methodologies→ Differentiable Simula-
tion.

Additional Key Words and Phrases: Physics-based Simulation, Differentiable
Simulation, Fluid-Rigid Coupling
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1 INTRODUCTION
Differentiable physics simulations have recently seen increasing at-
tention as an efficient tool to solve inverse design problems. With its
ability to directly differentiate the simulator to obtain the gradients
of any differentiable performance metrics with respect to design pa-
rameters, it is proven to outperform gradient-free methods in many
downstream tasks. Recent works have made progress in multi-body
systems [Geilinger et al. 2020; Qiao et al. 2021; Werling et al. 2021;
Xu et al. 2021a], deformable systems [Du et al. 2022; Hu et al. 2020,
2018b], cloth simulation [Li et al. 2023], fluidic devices [Du et al.
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2020; Li et al. 2022], one-way fluid-solid coupling [Takahashi et al.
2021], aquatic robot design [Ma et al. 2021; Nava et al. 2022], etc.

In addition to these tasks, the demands of inversely designing the
motion of solid objects with fluid-solid interactions also commonly
exist in daily life, such as flipping a water bottle to make it land
upright on the table after spinning, or skipping a rock on a lake to
achieve several bounces. In such problems, the fluid-rigid interaction
significantly affects the motion of solids, and the goal is to control
the final/middle state of solid objects after/during interaction with
the fluid environment, with the input being the release velocity of
solids. However, the differentiability of the simulation of two-way
fluid-solid coupling has not yet been extensively investigated.
There are two main challenges to develop a differentiable two-

way fluid-solid coupling simulator for rigid body control tasks. First,
due to the inconsistency of constitutive equations of liquids and
solids, as well as the ubiquitous, discontinuous contacts in fluid-solid
interactions, the differentiability of fluid-solid coupling is still an
open problem. On one hand, previous works [Du et al. 2020; Li et al.
2022; Ma et al. 2021; Nava et al. 2022; Takahashi et al. 2021] either
focuses on one-way fluid-rigid coupling, takes strong assumptions
on fluid models (e.g., Stokes flow in fluidic devices), or requires
large training data for different scenes to learn fluid dynamics with
neural networks, thus cannot be directly applied to our problem.
On the other hand, although automatic differentiation tools can
theoretically be applied to this problem, directly applying tools such
as DiffTaichi [Hu et al. 2020] to a SPH-based two-way coupled fluid-
rigid simulator encounters problems such as gradient explosion
in practice. Second, the large number of degrees of freedom (DoF)
of fluids incurs high computational costs in gradient formulation.
In previous studies on differentiable simulation, the entire system
being simulated typically needs to be differentiated [Hu et al. 2020;
Takahashi et al. 2021], but the high DoFs and the chaotic nature
of fluid dynamics distinguish it from deformable and multi-body
systems, which have relatively fewer DoFs.
In this paper, we present a novel differentiable two-way fluid-

rigid coupling simulator for the inverse design of control tasks of
rigid bodies. To tackle the first challenge of differentiability, our pur-
pose is to provide a differentiable simulator for Smoothed Particle
Hydrodynamics (SPH) which incorporates a unified representation
for fluids and solids using particles. However, naively differentiating
the forward simulation of the particle system encounters gradient
explosion issues. We investigate the causes of this gradient insta-
bility, which is related to the chaos in differentiating the high-DoF
particle interactions and the high sensitivity of SPH kernel functions
to particle distances. To handle this underlying non-smoothness of
the system, we propose a feasible localized gradient computation
scheme based on the idea of reducing the problem scale to address
the differentiability of SPH-based fluid-rigid coupling. Here our key
assumption is that in fluid-solid coupling, small perturbations to
the velocities of solids generally do not significantly affect the bulk
motion of the fluid environment, therefore, the problem scale can
be reduced by only considering the fluid surrounding the solids in
the gradient computation of fluid-rigid coupling.

To address the second challenge of efficiency, the proposed local-
ized gradient computation scheme allows us to obtain local infor-
mation about the fluid while avoiding the high computational cost

associated with differentiating the entire high-DoF system, which
is efficient.
Finally, we adopt our method to various challenging rigid body

control tasks with versatile fluid-rigid interactions. Some of our con-
trol results have not been introduced to computer graphics yet to
the best of our knowledge. We have achieved up to an order of mag-
nitude speedup compared with gradient-free optimization methods
in optimizations, demonstrating our method’s effectiveness.

Our paper makes the following technical contributions:

• We investigate the instability in differentiating the particle-
based fluid-rigid coupling simulator using SPH and present a
feasible gradient computation scheme to address its differen-
tiability.
• We present an efficient computational scheme to obtain the
gradient of fluid-rigid coupling while avoiding the high com-
putational cost to differentiate the entire high-DoF fluid sys-
tem.
• We show the efficacy, scalability, and extensibility of our
method in various fluid-rigid coupled rigid body control tasks,
including multi-rigid systems and training neural network
controllers.

2 RELATED WORK

2.1 Differentiable Simulation
Differentiable simulation is a relatively recent concept explored
in the graphics and machine learning community. Despite the re-
cent advances in differentiable simulators in rigid-body dynamics
[Freeman et al. 2021; Geilinger et al. 2020; Qiao et al. 2021; Xu et al.
2021a], soft-body dynamics [Du et al. 2022; Hahn et al. 2019; Hu
et al. 2018b; Murthy et al. 2020], cloth simulation [Li et al. 2023;
Liang et al. 2019], fluid dynamics and control[Du et al. 2020; Holl
et al. 2020; Li et al. 2022; McNamara et al. 2004; Schenck and Fox
2018], the work of differentiable simulation for fluid-rigid coupling
is relatively rare.

To differentiate a simulator, finite difference, auto-differentiation,
and manually deriving analytical derivatives, as well as their com-
binations are typical ways. The complex-step finite difference has
recently seen increasing attention [Luo et al. 2019; Shen et al. 2021]
for overcoming the drawbacks in the real number domain such as
subtractive cancellation issues. Auto-differentiation tools [Hu et al.
2020, 2018b] save the labor of manual derivation of gradient, which
store the information of the computational graph with a tape in the
forward computation and then backpropagate the computational
graph to obtain gradient.

To obtain the analytical gradient, McNamara et al. [2004] propose
to use the adjoint method to efficiently compute the gradient of a
fluid system for keyframe fluid animation control. Nava et al. [2022]
recently propose a differentiable fluid-solid coupling method for
aquatic robot design based on the immersed boundary method with
fluid dynamics inferred with a neural network, which needs to be
re-trained on different scenes with large training data to predict the
fluid motion plausibly. Takahashi et al. [2021] propose to use the
adjoint method based on the variational formulation of fluid-solid
coupling [Batty et al. 2007], however, they only consider one-way
coupling from solid to fluid, which limits its use-case. Li et al. [2022]
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propose an anisotropic mixture model with no-slip and free-slip
boundary conditions of fluid-rigid coupling for topology optimiza-
tion of fluidic devices. Since our work considers the diverse two-way
coupling between dynamic fluids and solid objects, these methods
cannot be directly applied to our problem.

2.2 Two-way Fluid-Solid Coupling
Because the literature on the topic of general fluid-solid interactions
is extensive, in this section we focus on the two-way coupling
methods of fluids and rigid objects. Depending on the representation
methods used for fluids, methods of two-way fluid-solid coupling
can be classified into three categories: grid-based, particle-based, and
hybrid-based. Various techniques for grid-based fluid-solid coupling
have been developed over the years [Batty et al. 2007; Guendelman
et al. 2005; Klingner et al. 2006; Narain et al. 2010; Robinson-Mosher
et al. 2008; Takahashi and Batty 2020; Takahashi and Lin 2019],
where solving fluid-solid coupling is usually formulated as solving a
unified system to determine the correct exchange of forces between
fluids and solids.
Another popular method to solve multi-material interactions is

the hybrid-based Material Point Method (MPM), where collisions
with different materials can be naturally handled by assigning differ-
ent material properties to particles and interchanging their momen-
tums on background grids. Due to this advantage of MPM, two-way
fluid-solid coupling has been achieved in various settings [Daviet
and Bertails-Descoubes 2016; Ding and Schroeder 2020; Fang et al.
2020; Han et al. 2019; Hu et al. 2018a; Klár et al. 2016].
Since the Lagrangian view is quite natural for solid objects, the

Smoothed Particle Hydrodynamics (SPH) method offer another con-
sistent framework for formulating coupling problems [Becker and
Teschner 2007; Bender and Koschier 2015, 2017; Ihmsen et al. 2014;
Koschier et al. 2019; Solenthaler and Pajarola 2009; Takahashi et al.
2018] where fields of physical properties of fluid are discretized
with sampling points named smoothed particles. To handle the par-
ticle deficiency near the fluid-solid boundaries, Akinci et al. [2012]
propose an SPH-based two-way fluid-rigid coupling method by sam-
pling particles on the surface of solids, which will be introduced
in detail since it is closely related to our method. To improve the
accuracy of coupling, Band et al. [2018b] propose to use the moving
least square method to extrapolate the pressure of boundary par-
ticles; Bender et al. [2019]; Koschier and Bender [2017] propose to
use implicit representations for solid objects with signed distance
fields. To further improve the stability of simulation and consider
rigid-rigid coupling, Gissler et al. [2019] propose a strong two-way
coupling scheme for SPH with rigid-rigid contact. In our work, we
will not consider such type of strong two-way coupling of fluids
and solids and leave it to our future work. For rigid-rigid contact,
Gissler et al. [2019] also propose an SPH-based rigid contact solver
based on artificial density deviations at rigid particles. Based on the
continuity equation, an equation of artificial pressure field on all
rigid particles in contact is solved to resolve the rigid-rigid contact
by pressure gradient forces. However, the complexity of this for-
ward simulation method makes it non-trivial to differentiate in our
practice, but inspired by this idea and [Xu et al. 2021a,b], we present
a penalty-based SPH-based rigid-rigid coupling method, which has
a better differentiability.

2.3 Control of Rigid Bodies with Fluid-Solid Interaction
The control of rigid bodies and multi-body systems with fluid-solid
interactions is an active research topic in the field of graphics and
robotics. Besides the aforementioned works that derive derivatives
from physical-based simulators to get gradients of the simulation
process, some researchers directly adopt learning-based simulators
to leverage the differentiability of neural networks to obtain gra-
dient information. Physics-informed networks are widely used to
approximate the solution of the partial differential equations of the
simulated system [Nava et al. 2022; Raissi et al. 2019; Ramos et al.
2022]. Li et al. [2018]; Pfaff et al. [2020] use graph networks or their
variants to build a coupling simulator. However, it is hard to guar-
antee the physical accuracy of the simulation predicted by neural
networks unless trained with a large amount of data. In addition to
gradient-based methods, gradient-free approaches are also popular
for inverse design problems. Tan et al. [2011] optimize the gait of
articulated swimming creatures using gradient-free searching meth-
ods. Besides, some works assume the solid objects are directed by
fluids [Ma et al. 2018; Ren et al. 2023], where techniques from rein-
forcement learning are adopted to achieve versatile control tasks of
fluid-directed solid objects.

3 PROBLEM FORMULATION
In this section, we present a general formulation of the control
problem. We focus on the control of rigid bodies in a fluid-rigid
coupled system,where the fluid-rigid interaction significantly affects
the motion of solids.

Input & Output. In the coupled fluid-rigid system, we represent
the state sR of a rigid body R with its linear and angular veloc-
ity 𝑣, 𝜔 , position 𝑥 and the 3-dimensional orientation 𝑞, namely
sR B (𝑣, 𝜔, 𝑥, 𝑞), as shown in Fig. 2. The state sF of the fluid F is
discretized with Lagrangian particles carrying physical properties.
The inputs of the control problem are the initial state s0R , s

0
F , and

the target rigid body state s𝑛R at a user-specified time step 𝑛. The
expected output is the optimal elements of the initial rigid body
state s0R to make R reach s𝑛R after simulation for 𝑛 time steps.

s0R = (𝑣0, 𝜔0, 𝑥0, 𝑞0)
R, F

𝑣0

𝜔0

p = (𝑣0, 𝜔0)

s𝑛R = (𝑣𝑛, 𝜔𝑛, 𝑥𝑛, 𝑞𝑛)
goal = (𝑥∗, 𝑞∗)

Fig. 2. Problem formulation of one of the control tasks "water bottle flip
challenge" as an example. The design variables (green color) are the initial
velocity p = (𝑣0, 𝜔0 ) ⊂ s0R . The goal (red color) is to land on target position
𝑥∗ while reaching the target orientation 𝑞∗ at a user-specified time.
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Formulation. We formulate this inverse design of rigid body con-
trol task as an optimization problem. We define the goal of our
task as a differentiable metric of target rigid body state s𝑛R at the
user-specified time step 𝑛 of a simulation trajectory as 𝐸 (s𝑛R ), which
is to be minimized: minp 𝐸 (s𝑛R ) = 𝐸goal + _𝐸penalty, where p is the
design variable introduced below, and 𝐸penalty is the penalty term
that describe the constraints with _ as the weight parameter.

Design Variables. We define the design variable p of the control
tasks as the elements of the initial state s0R ofR. One of the examples
is the "water bottle flip challenge" task, in which the design parame-
ters are the initial release velocity (𝑣0, 𝜔0) ⊂ s0R of the bottle R, and
the goal is to make the bottle land on target position while standing
upright on its base or cap, with 𝐸goal defined as the combination
of linear and angular distances to the target, as Fig. 2 shows. This
proposed formulation can be readily extended to control tasks in
which the control signal is applied to rigid body agents at regular
intervals of 𝑁 time steps to achieve a continuous control.

4 FORWARD SIMULATION
We present a brief overview of the forward simulation of SPH-based
fluid, fluid-rigid coupling, and rigid body dynamics. For rigid-rigid
coupling, we adopt a penalty-based method to develop a unified
differentiable SPH-based fluid-rigid coupled system.

4.1 SPH-based Fluid Simulation
We simulate fluids using the Navier-Stokes equations for incom-
pressible flow in Lagrangian coordinates. We follow the operator
splitting scheme and adopt the implicit DFSPH method [Bender
and Koschier 2015, 2017] for its good stability and efficacy. DFSPH
solves the pressure projection in an iterative manner, and the pres-
sure 𝑝 𝑓𝑖 of fluid particle 𝑓𝑖 is solved implicitly with the source term
respectively being the divergence error and density error as:

𝑝 𝑓𝑖 =
1
Δ𝑡

𝐷𝜌 𝑓𝑖

𝐷𝑡
𝑘DFSPH
𝑓𝑖

, 𝑝 𝑓𝑖 =
1
Δ𝑡2

(
𝜌∗
𝑓𝑖
− 𝜌0

)
𝑘DFSPH
𝑓𝑖

, (1)

where 𝑘DFSPH
𝑓𝑖

is a before-iteration pre-computed factor, 𝐷𝜌𝑓𝑖

𝐷𝑡
=∑

𝑗 𝑚 𝑗

(
v𝑖 − v𝑗

)
· ∇𝑊𝑖 𝑗 is the density error caused by velocity advec-

tion, where𝑊𝑖 𝑗 =𝑊 (𝑥𝑖 − 𝑥 𝑗 , ℎ) is the kernel function with support
radius ℎ and two particle positions 𝑥𝑖 , 𝑥 𝑗 ; 𝜌∗𝑓𝑖 = 𝜌 𝑓𝑖 + Δ𝑡

𝐷𝜌𝑓𝑖

𝐷𝑡
is the

predicted density. The density error solver and the divergence error
solver in DFSPH have a similar structure as shown in Alg. (1). In
the pressure projection, the coupling force with solid boundaries
needs to be considered, which is introduced in the next subsection.

4.2 SPH-based Two-way Fluid-Rigid Coupling
For fluid-solid coupling, we adopt the method of [Akinci et al. 2012],
in which the surfaces of rigid bodies are sampled with bound-
ary particles to prevent deficiency issues, and the two-way cou-
pling is solved based on hydrodynamic forces in a momentum-
conserving manner. In [Akinci et al. 2012], the density 𝜌 𝑓𝑖 of fluid
particle 𝑓𝑖 reads as: 𝜌 𝑓𝑖 = 𝑚𝑓𝑖

∑
𝑓𝑗 𝑊𝑖 𝑗 +

∑
𝑏 𝑗

Ψ𝑏 𝑗
(𝜌0)𝑊𝑖 𝑗 where

Ψ𝑏 𝑗
(𝜌0) = 𝜌0𝑉𝑏 𝑗

is the contribution of a boundary particle 𝑏 𝑗 by

taking the volume 𝑉𝑏 𝑗
of 𝑏 𝑗 into account, where 𝑉𝑏 𝑗

=
𝑚𝑏𝑗

𝑚𝑏𝑗

∑
𝑏𝑖
𝑊𝑗𝑖

ALGORITHM 1: Pressure Projection Solver in DFSPH

1 Function PressureProjection (𝑘DFSPH )
2 𝜖 = density error (or divergence error)
3 while (𝜖 > thresh) do
4 parallel forall fluid particle 𝑓𝑖 do

5 compute 𝜌𝑓𝑖 (or
𝐷𝜌𝑓𝑖
𝐷𝑡

)
6 parallel forall fluid particle 𝑓𝑖 do
7 sequential forall neighbor fluid particles 𝑓𝑗 do

8 ^𝑖 =
𝜌∗
𝑖
−𝜌0

Δ𝑡2
𝑘DFSPH
𝑖

(or ( 1
Δ𝑡

𝐷𝜌𝑖
𝐷𝑡
)𝑘DFSPH

𝑖
)

9 ^ 𝑗 =
𝜌∗
𝑗
−𝜌0

Δ𝑡2
𝑘DFSPH
𝑗

(or ( 1
Δ𝑡

𝐷𝜌 𝑗

𝐷𝑡
)𝑘DFSPH

𝑗
)

10 v∗
𝑖
:= v∗

𝑖
− Δ𝑡

∑
𝑗 𝑚 𝑗

(
^𝑖
𝜌𝑖
+ ^ 𝑗

𝜌 𝑗

)
∇𝑊𝑖 𝑗

11 sequential forall neighbor boundary rigid particles 𝑏 𝑗 do
12 compute fluid-rigid coupling force with Eq. (2)
13 update v∗

𝑖

14 end
15 return updated fluid particle velocities v∗

16 end

with 𝑏𝑖 denoting the neighboring boundary particles of 𝑏 𝑗 . Then
the pressure force applied from a boundary particle 𝑏 𝑗 to a fluid
particle 𝑓𝑖 is derived as:

𝐹𝑓𝑖←𝑏 𝑗
= −𝑚𝑓𝑖Ψ𝑏 𝑗

(𝜌0)
(

𝑝 𝑓𝑖

𝜌0𝜌 𝑓𝑖

)
∇𝑊𝑖 𝑗 . (2)

Based on Newton’s third law, the symmetric pressure force from
fluid particle 𝑓𝑖 to boundary particle 𝑏 𝑗 is 𝐹𝑏 𝑗←𝑓𝑖 = −𝐹𝑓𝑖←𝑏 𝑗

, which
naturally enforces the conservation of momentum. Finally, the net
force 𝑓 and torque 𝜏 of a rigid body is a double summation of all
forces and torques of the rigid particles from their neighboring fluid
particles, with 𝜏𝑏 𝑗←𝑓𝑖 = 𝑟𝑏 𝑗

×𝐹𝑏 𝑗←𝑓𝑖 in which 𝑟𝑏 𝑗
is the displacement

of rigid particle 𝑏 𝑗 to the body’s mass center:
𝑓 =

∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝐹𝑏 𝑗←𝑓𝑖 , 𝜏 =
∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝜏𝑏 𝑗←𝑓𝑖 . (3)

We adopt the cubic kernel function [Monaghan 1992] for its
second-order continuity, which is used later in gradient computation,
and assume the surfaces of rigid bodies are frictionless, therefore,
no fluid frictional force at the fluid-rigid boundary is involved.

4.3 Rigid Body Dynamics & SPH-based Rigid Contact
For rigid body dynamics, we consider a semi-implicit time-stepping
scheme as follows, where unit quaternion is adopted as the descrip-
tion of rigid body orientation:

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡M−1 𝑓 𝑛,
𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡𝑣𝑛+1,
𝜔𝑛+1 = 𝜔𝑛 + Δ𝑡 (I𝑛)−1 (𝐿𝑛 × 𝜔𝑛 + 𝜏𝑛),

𝑞𝑛+1 = normalize(𝑞𝑛 + Δ𝑡

2
( [0, 𝜔𝑛+1] ⊗ 𝑞𝑛)),

(4)

where Δ𝑡 is the time step, M a positive diagonal mass matrix, 𝑓 and
𝜏 the external force and torque, I and 𝐿 = I · 𝜔 the inertia tensor
and angular momentum of rigid body, respectively, and [0, 𝜔] is a
pure quaternion with imaginary part 𝜔 ∈ R3. The normalization
operation for 𝑞 is to eliminate the numerical error to ensure the
quaternion stays on the unit 𝑆3 sphere.
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For rigid-rigid contact, inspired by [Gissler et al. 2019; Xu et al.
2021a,b], we present a penalty-based SPH-based rigid-rigid contact
model for its good differentiability, where the collision detection is
done using SPH density formulation, and the normal contact force
and friction force at rigid particle 𝑟 is computed as:

𝐹normal
𝑟 = 𝑘 ( 𝜌𝑟

𝜌0
− 1)n𝑟 , 𝐹 friction𝑟 = −`∥𝐹normal∥ vrelr

∥vrelr ∥
, (5)

where 𝑘, ` is the contact stiffness and friction coefficent, respec-
tively. 𝜌𝑟 is the SPH density computed only between rigid parti-
cles, n𝑟 = x𝑟 −

∑
𝑠 x𝑠𝑊𝑟𝑠∑
𝑠𝑊𝑟𝑠

is the estimated normal at 𝑟 with 𝑠 being
the neighboring rigid particles of the same rigid body of 𝑟 , and
vrel𝑟 = v𝑟 −

∑
𝑘 v𝑘𝑊𝑟𝑘∑
𝑘𝑊𝑟𝑘

is the estimated relative velocity at 𝑟 with 𝑘

being the neighboring rigid particles of the other rigid body of 𝑟 .

5 DIFFERENTIABLE SPH-BASED FLUID-RIGID
COUPLING

We now describe in detail how we differentiate the forward simula-
tion introduced in Sec. 4. A comprehensive overview of the compu-
tational graph of the forward simulation and gradient computation
for SPH-based fluid-rigid coupling is presented in Fig. 3. We adopt
a forward-mode differentiation scheme, and the comparison with
reverse-mode differentiation and the discussion of the reason for
our choice is in Sec. 7.4.3.
We start by differentiating the semi-implicit integration of rigid

body dynamics in Sec. 5.1 (shown as the gray block in Fig. 3(a)).
Then we present a general differentiable formulation of SPH-based
fluid-rigid coupling in Sec. 5.2, where we analyze the workflows
of SPH-based fluid and solid forward simulations and extract a
combined gradient computation scheme for the two-way coupled
simulation. However, there will be quick gradient explosion issues
with this naive general differentiation scheme, so we investigate
possible causes of the gradient instability in Sec. 5.3 and finally
present a stable and efficient localized gradient computation scheme
in Sec. 5.4.

5.1 Gradients of Rigid-body Dynamics
According to the problem formulation introduced in Sec. 3, we need
to compute the gradient of rigid body state s𝑛+1R at time step𝑛+1with
respect to the initial state variable s0R at time step 0 in a simulation
trajectory, where 𝑠0 ∈ s0R can represent 𝑣0, 𝜔0, 𝑥0, 𝑞0, etc. Then the
semi-implicit integration of rigid body dynamics is differentiated
from the chain rule as follows:

d𝑣𝑛+1

d𝑠0
=

d𝑣𝑛

d𝑠0
+ Δ𝑡M−1 d𝑓

𝑛

d𝑠0
,

d𝑥𝑛+1

d𝑠0
=

d𝑥𝑛

d𝑠0
+ Δ𝑡 d𝑣

𝑛+1

d𝑠0
,

d𝜔𝑛+1

d𝑠0
=

d𝜔𝑛

d𝑠0
+ Δ𝑡

[
d(I𝑛)−1
d𝑠0

(𝐿𝑛 × 𝜔𝑛 + 𝜏𝑛)

+(I𝑛)−1 ( d(𝐿
𝑛 × 𝜔𝑛)
d𝑠0

+ d𝜏𝑛

d𝑠0
)
]
,

d𝑞𝑛+1

d𝑠0
=

d𝑞𝑛+1

d𝑞

[
d𝑞𝑛

d𝑠0
+ Δ𝑡

2
d( [0, 𝜔𝑛+1] ⊗ 𝑞𝑛)

d𝑠0

]
,

(6)

where 𝑞 B 𝑞𝑛 + Δ𝑡
2 ( [0, 𝜔

𝑛+1] ⊗ 𝑞𝑛) is the updated quaternion
before the normalization operation. Note that the inertia tensor
I is the function of the spatial orientation of rigid bodies since
I𝑛 = 𝑅𝑛I0𝑅𝑛⊤ with 𝑅𝑛 = 𝑅𝑛 (𝑞𝑛) as the rotation matrix, so we also
need to take the derivative of I into account. For more details on
gradient computation, we refer readers to the supplementary.

In Eq. (6), there are two unknowns d𝑓 𝑛
d𝑠0 ,

d𝜏𝑛
d𝑠0 . Because in our con-

trol task, we focus on the state sR of rigid body R in a coupled
fluid-solid system, we suppose the external net force and torque
𝑓 𝑛, 𝜏𝑛 applied to R from the fluid environment at time step 𝑛 as
the function of s𝑛R , since the change of s𝑛R will directly change
the status of fluid-rigid interaction thus affecting 𝑓 𝑛, 𝜏𝑛 . Therefore,
we have 𝑓 𝑛 B 𝑓 𝑛 (s𝑛R ) = 𝑓 𝑛 (𝑣𝑛, 𝑥𝑛, 𝜔𝑛, 𝑞𝑛) and 𝜏𝑛 B 𝜏𝑛 (s𝑛R ) =
𝜏𝑛 (𝑣𝑛, 𝑥𝑛, 𝜔𝑛, 𝑞𝑛). Then we solve d𝑓 𝑛

d𝑠0 ( d𝜏𝑛
d𝑠0 the same way) based

on the chain rule:
d𝑓 𝑛

d𝑠0
=

𝜕𝑓 𝑛

𝜕𝑥𝑛
d𝑥𝑛

d𝑠0
+ 𝜕𝑓 𝑛

𝜕𝑣𝑛
d𝑣𝑛

d𝑠0
+ 𝜕𝑓 𝑛

𝜕𝑞𝑛
d𝑞𝑛

d𝑠0
+ 𝜕𝑓 𝑛

𝜕𝜔𝑛

d𝜔𝑛

d𝑠0
. (7)

From Eq. (7), given d𝑥𝑛
d𝑠0 ,

d𝑣𝑛
d𝑠0 ,

d𝑞𝑛
d𝑠0 ,

d𝜔𝑛

d𝑠0 from the last time step, we
need to compute the partial derivatives of 𝑓 𝑛, 𝜏𝑛 with respect to
𝑠𝑛 ∈ (𝑣𝑛, 𝜔𝑛, 𝑥𝑛, 𝑞𝑛), which is related to the details of SPH-based
fluid-rigid coupling and is introduced in the next subsection.

5.2 A General but Unstable Differentiation Scheme of
SPH-based Two-way Fluid-Rigid Coupling

In this subsection, we introduce a general way to compute the
gradient of SPH-based two-way fluid-rigid coupling. This scheme,
however, causes instability issues such as quick gradient explosion
in practice, which motivates us to investigate the causes and leads
to the improved differentiation scheme introduced in later sections.

As introduced in Sec. 4.2, we discretize the surface of solids using
boundary particles. In this model, the state s𝑏 𝑗

of each boundary
particle 𝑏 𝑗 is represented by its position 𝑥𝑏 𝑗

and linear velocity 𝑣𝑏 𝑗
,

namely, s𝑏 𝑗
= (𝑥𝑏 𝑗

, 𝑣𝑏 𝑗
), which are computed from the position 𝑥

and rotation 𝑅 = 𝑅(𝑞) of rigid body as: 𝑥𝑛
𝑏 𝑗

= 𝑥𝑛 + 𝑟𝑛
𝑏 𝑗

and 𝑣𝑛
𝑏 𝑗

=

𝑣𝑛+𝜔×𝑟𝑛
𝑏 𝑗

with 𝑟𝑛
𝑏 𝑗

= 𝑅𝑛𝑟0
𝑏 𝑗
, where 𝑟𝑏 𝑗

is the particle’s displacement
relative to the body’s center of mass. Based on Eqs. (3) and (7), we
compute the gradient of the particle-pair fluid-rigid coupling forces
and torques on the rigid particles, and then aggregate these gradients
to obtain the final gradient for the rigid body as a whole:

𝜕𝑓 𝑛

𝜕𝑠𝑛
=

∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑠𝑛
=

∑︁
𝑏 𝑗

∑︁
𝑓𝑖

d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

𝜕s𝑏 𝑗

𝜕𝑠𝑛
. (8)

To compute
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
in Eq. (8), we formally summarize the for-

ward computational graph for SPH-based fluid-rigid coupling in one
time step, as Fig. 3(a) shows. Both the states of rigid body particles
and fluid particles contribute to the computation of coupling forces
and torques. In Fig. 3(b), 𝑏 𝑗 , 𝑓𝑖 , 𝑓𝑗 denote the rigid particle (gray
color), the fluid particle (blue color) neighboring 𝑏 𝑗 , and the fluid
particle neighboring 𝑓𝑖 , respectively. In the iterative solving process
of fluid pressure projection, the states of 𝑏 𝑗 contribute to the update
of the velocities of all fluid particles through the intermediate result
of pressure forces, which affects the velocities of neighboring 𝑓𝑖 and
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(a) (b)

Fig. 3. The computational graph (a) and illustration (b) of SPH-based fluid-rigid coupling force and torque in the 𝑛th time step. (a): In the gray dashed block on
the left, the reliance between variables of solid motion in one-step integral is demonstrated. The green block part is analyzed in more detail on the right, where
relationships between the rigid-body variables are shown in the orange dashed block, and fluid variables are contained in the blue dashed block. Variables
with a subscript stand for those being near the solid-fluid boundary. Black arrows stand for forward calculation reliance, and red arrows stand for gradient
computation reliance in our general differentiable formulation. (b): When 𝑏 𝑗 enters the support radius of the kernel function of 𝑓𝑖 (the blue circle with yellow
outline centered at 𝑓𝑖 ), a fluid-rigid coupling force is applied on 𝑏 𝑗 .

further influences the velocities of 𝑓𝑗 even if 𝑓𝑗 is not directly adja-
cent to 𝑏 𝑗 . We compute the gradient of this forward computational
graph in Fig. 3(a):

d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

=
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕s𝑏 𝑗

+
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

+
∑︁
𝑓𝑗

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑗

d𝑣 𝑓𝑗
ds𝑏 𝑗

=
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕s𝑏 𝑗

+
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

+
∑︁
𝑓𝑗

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑗

©«
𝜕𝑣 𝑓𝑗

𝜕s𝑏 𝑗

+
∑︁
𝑓𝑝

𝜕𝑣 𝑓𝑗

𝜕𝑣 𝑓𝑝

d𝑣 𝑓𝑝
ds𝑏 𝑗

ª®¬ ,
(9)

where 𝑓𝑝 is the neighboring particle of 𝑓𝑗 , and we can further ex-

pand
d𝑣𝑓𝑝
ds𝑏𝑗

to a formula contain d𝑣𝑓𝑖
ds𝑏𝑗

. With the relationship between
particle accelerations and coupling forces, as the iterative solving
process goes on, 𝑘th-order neighboring fluid particles are taken into
account, leading to a recursive gradient computation formulation.

In Eq. (9), the gradient of the fluid-rigid coupling force 𝐹𝑏 𝑗←𝑓𝑖

with respect to the state of rigid particle s𝑏 𝑗
and velocity of fluid

particle 𝑣 𝑓𝑖 can be explicitly derived from Eqs. (1) (2), e.g.:

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑥𝑏 𝑗

=𝑚𝑓𝑖𝑉𝑏 𝑗

©«
1
𝜌 𝑓𝑖
∇𝑊 ⊤𝑖 𝑗

𝜕

(
𝑝𝑓𝑖

𝜌𝑓𝑖

)
𝜕𝑥𝑏 𝑗

+
𝑝 𝑓𝑖

𝜌 𝑓𝑖
∇2𝑊𝑖 𝑗

ª®®¬ ,
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣𝑏 𝑗

= −𝑚𝑓𝑖𝑉𝑏 𝑗

(
1
𝜌 𝑓𝑖
∇𝑊 ⊤𝑖 𝑗

𝜕𝑝 𝑓𝑖

𝜕𝑣𝑏 𝑗

)
,

(10)

with more details in the supplementary.
Finally, by assuming that for all fluid particle 𝑓 , at the beginning

of the iteration d𝑣𝑓
ds𝑏𝑗

= 0, we recursively solve
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
= −

d𝐹𝑓𝑖←𝑏𝑗

ds𝑏𝑗
with Eqs. (8)(9). Then we accumulate the gradient in all iterations
to get the final gradient.
Eqs. (8)(9) will serve as a general differentiable formulation of

the two-way coupled SPH-based simulation which leads to a re-

currence formula to solve
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
. and the gradient of torque is

d𝜏 (𝑘 )
𝑏𝑗←𝑓𝑖

ds𝑏𝑗
= [𝑟𝑏 𝑗

]
d𝐹 (𝑘 )

𝑏𝑗←𝑓𝑖

ds𝑏𝑗
+ [𝐹 (𝑘 )

𝑏 𝑗←𝑓𝑖
]⊤

d𝑟𝑏𝑗
ds𝑏𝑗

, where [𝑟 ] ∈ R3×3 is the

skew-symmetric matrix of 𝑟 ∈ R3.
This computational scheme, in essence, is to evaluate the distur-

bance of the iterative solving process of fluid pressure projection
with respect to the perturbation of rigid body boundary conditions.
As iteration index 𝑘 increases, to update the velocity 𝑣 𝑓𝑖 of fluid
particle 𝑓𝑖 , 𝑘th-order neighboring fluid particles of the rigid body
are involved, then the recursive solving of the fluid-rigid coupling
gradient gradually accumulates the gradient contribution from the
𝑘th-order of fluid particles.

In practice, however, we find that directly applying this gradient
in optimization can cause instability issues, such as quick gradient
explosion after gradient accumulation with DFSPH iterations in one
time-step after fluid-rigid contact. A similar gradient explosion is
also observed using the forward-mode differentiation of DiffTaichi
[Hu et al. 2020]. So we consider this unstable gradient problem as
a common issue in differentiating SPH-based fluid-rigid coupling
simulation, which is a sign of the underlying non-smoothness of
the system. This presents a significant challenge that hinders the
differentiability of an SPH-based fluid-rigid coupling simulator, and
we discuss the possible causes in the following subsection.

5.3 Instability in Differentiating SPH-based Two-way
Fluid-rigid Coupling

There are two possible causes contributing to the unstable gradient
result with the naive general differentiation scheme introduced
above: the underlying chaos in differentiating the high-DoF particle
interactions, and the sensitivity of SPH kernel function to particle
distances.

5.3.1 Instability in differentiating the high-DoF particle represen-
tation. Mathematically, the recursive nature of Eqs. (8)(9) incurs a
high risk of gradient explosion if any term that is repeatedly multi-
plied in the formula has an eigenvalue bigger than 1. Here we plot
the magnitude of each term in Eq. (9) with respect to the iteration
𝑘 in Fig. 4. It will be hard to control the eigenvalues of the terms
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Fig. 4. The log plot of the norm of each term in Eq. (9) with respect to the
iteration number 𝑘 in our test scene similar to the water rafting scene in Fig.

8, where A, B, and C represent the terms
𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑓𝑖

d𝑣𝑓𝑖
ds𝑏𝑗

,
∑

𝑓𝑗

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑓𝑗

d𝑣𝑓𝑗
ds𝑏𝑗

and
𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕s𝑏𝑗
respectively.

𝐴, 𝐵 in the figure to always stay within a safe range by tweaking the
overall scale of the physical system, which we left as future work.
This quick gradient explosion issue can be related to the chaotic
nature of the high-DoF particle interactions in DFSPH, where try-
ing to figure out the sensitivity of each particle pair’s interaction
during the iterative solving process to input parameters leads to a
combinational explosion.

5.3.2 Instability in differentiating SPH kernel function. We have
observed that another possible contributing factor to the gradient
instability is the high sensitivity of spatial derivatives of SPH ker-
nel functions to the positions of solid boundary particles. Though
the commonly used cubic kernel function 𝑊 in SPH is second-
order differentiable, however, the order of magnitude of its first
and second-order derivatives ∇𝑊,∇2𝑊 increases rapidly when the
distance of two particles decreases, as shown in the scaled plot below.

When the fluid system is al-
ready at a state where the incom-
pressibility constraint has been
satisfied, perturbations in the po-
sition of the solid boundary can
cause rapid changes in certain es-
timated fluid physical properties
such as density, as a result of the

sensitivity of the derivatives of the kernel function𝑊 to particle
distances. This can sometimes introduce abrupt penalty forces from
the fluid incompressibility constraint, leading to sudden changes in
the fluid-rigid coupling forces and unstable gradients.

Based on these analysis, we propose several techniques to stabilize
the gradient while achieving efficiency in the next subsection.

5.4 A Stable & Efficient Localized Differentiation Scheme
To tackle the aforementioned possible causes of non-smoothness in
differentiating SPH-based fluid-rigid coupling, we first propose a
localized gradient computation scheme to reduce the scale of the
particle system in differentiation in response to the first possible
cause of non-smoothness. Then we propose a reduced gradient

computation scheme to handle the high sensitivity of SPH kernel
functions to particle distances.

5.4.1 Localized Gradient Formulation of Fluid-Rigid Coupling. we
first design our approach to reduce the gradient instability from
the idea of reducing the scale of the problem based on a key as-
sumption. Our key assumption here is that in fluid-solid coupling,
small perturbations of the states of solid objects generally do not
significantly affect the bulk motion of the fluid environment. One
reason is that such perturbation only affects the state of the fluid
surrounding the solid boundary at the next time step, and it takes
time to propagate this perturbation to the further area of the fluid
environment that not directly adjacent to solid boundaries due to
incompressibility. Therefore, to control the state of rigid bodies in-
teracting with the fluid environment, we propose to only consider
the fluid surrounding the solid objects when computing the gradient
of fluid-rigid coupling. In practice, we drop the unstable gradient
contributed by the 𝑘th (𝑘 > 1)-order neighboring fluid particles in
the DFSPH pressure solver. Compared with Eq. (9), this method
simplifies the original computational graph of coupling forces and
torques by ignoring some of the gradient computations (dotted red
arrows) in Fig.3(a), where only the fluid particles 𝑓𝑖 adjacent to rigid
body particles are considered in gradient computation:

d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

≈
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕s𝑏 𝑗

+
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

. (11)

To solve
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
, based on the impulse-momentum theorem:
d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

Δ𝑡 = −𝑚𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

. (12)

Based on Eqs. (11)(12), we derive:
d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

=
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕s𝑏 𝑗

− Δ𝑡

𝑚𝑓𝑖

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑖

d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

, (13)

from which, we solve
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
as the following compact formula,

with 𝐼 ∈ R3×3 being the identity matrix:

d𝐹𝑏 𝑗←𝑓𝑖

ds𝑏 𝑗

=

(
𝐼 + Δ𝑡

𝑚𝑓𝑖

𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕𝑣 𝑓𝑖

)−1
𝜕𝐹𝑏 𝑗←𝑓𝑖

𝜕s𝑏 𝑗

. (14)

This leads to a localized gradient computation, which is also effi-
cient since it allows us to obtain local information about the fluid
while avoiding the high computational cost associated with differen-
tiating the entire high-DoF system. With the warm start techniques
introduced in [Bender and Koschier 2015] the number of required
iterations to be unrolled per time step is not large in practice. We
note that our assumption of a localized influence of rigid objects
to fluid in fluid-solid coupling has bias from physical ground truth,
however, we find it effective in optimization of our inverse control
tasks of a range of complexity including Figs. 5,7,8,9, etc.

5.4.2 Reduced Gradient Computation Scheme. Based on the obser-
vation of the sensitivity of SPH kernel functions to particle distances,
we propose to avoid directly perturbing the spatial position and rota-
tion of the rigid body in gradient computation, and instead compute
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the gradient only from perturbations in rigid body velocities. This
leads to a reduced gradient formula from Eq. (7) presented below:

d𝑓 𝑛

d𝑠0
=

𝜕𝑓 𝑛

𝜕𝑣𝑛
d𝑣𝑛

d𝑠0
+ 𝜕𝑓 𝑛

𝜕𝜔𝑛

d𝜔𝑛

d𝑠0
, (15)

which means we only compute
d𝐹𝑏𝑗←𝑓𝑖

d𝑣𝑏𝑗
in the computational graph

shown in Fig. 3(a). In practice, this reduced gradient leads to a more
stable gradient result compared with using full gradients as Eq.
(7), which achieves a more consistent update direction of design
variables and achieves better optimization results in our experiments
as discussed in Sec. 7.4.1.

5.4.3 Gradient of Neighborhood Search. To backpropagate through
the neighborhood search operation in SPH, we assume that the set
of neighboring fluid particles surrounding a rigid body particle does
not experience large deviation between adjacent time steps, which
is reasonable in most cases in our experiments as the local fluid
region around a rigid body is generally subject to continuous, rather
than abrupt, fluid movement. This assumption is also adopted in
other research literature such as [Solenthaler and Pajarola 2009].
As a result, we utilize the same set of neighboring fluid particles to
compute the gradients.

5.4.4 Integration of Differentiable Fluid-Rigid & Rigid-Rigid Cou-
pling. The penalty-based SPH-based rigid-rigid contact model pre-
sented in Sec.4.3 can be readily differentiated, with more details in
the supplementary. We integrate the gradient computation of this
unified SPH-based coupling system by first computing the gradient
of fluid-rigid coupling then followed by computing the gradient of
rigid-rigid coupling based on chain rules.

In the preceding subsections, we have derived the gradients nec-
essary for building a differentiable two-way SPH-based fluid-rigid
coupling simulator from end to end. We integrate this gradient com-
putation scheme into the forward computation: after the forward
pass of each time step, we start the gradient computation fromEq. (6),
with the fluid-rigid coupling gradient computed from Eqs. (8), (14)
and (15) with more computational details in the supplementary.

6 ALGORITHM & IMPLEMENTATION
In this section, we present the main algorithm for gradient compu-
tation and implementation details, which is based on the theoretical
foundations outlined in the preceding sections.

Algorithm. We propose the algorithms for the overall simulation
time step and the gradient computation of DFSPH solvers as Algs. 2.
The loss function introduced in Sec. 3 can then be optimized with
the gradient of the simulator. We develop our algorithm based on
DFSPH and incorporate the gradient computation into the forward
simulation of the pressure solvers of DFSPH.

Implementation. We implement our method with C++ and Python
based on the SPlisHSPlasH library [Bender et al. 2022] and test on
an AMD Ryzen 5 R5600X CPU (6 cores, 3.7 GHz) with 32GBmemory.
We use Eigen for matrix and vector operations, and use OpenMP
for parallelization. In the simulation, we use adaptive time-stepping
according to the CFL condition described in [Bender and Koschier

ALGORITHM 2: Simulation timestep with gradient computation
Input: Fluid state s𝑛F (with each fluid particle storing volume𝑉 ,

position 𝑥 , velocity 𝑣, DFSPH factor 𝑘DFSPH), rigid body state

s𝑛R , gradient
ds𝑛R
ds0R

Output: Fluid state s𝑛+1F , rigid body state s𝑛+1R , gradient
ds𝑛+1R
ds0R

1 Function TimeStep
2 find particle neighborhoods
3 compute fluid particle densities
4 compute fluid particle DFSPH factors 𝑘DFSPH

5 v∗
𝑓
= DivergenceSolverWithGradient(𝑘DFSPH )

6 parallel forall fluid particles 𝑓𝑖 do
7 v𝑓𝑖 (𝑡 + Δ𝑡 ) = v∗

𝑓𝑖

8 compute fluid particle non-pressure forces Fadv
𝑓𝑖
(𝑡 )

9 adapt time step size Δ𝑡 according to CFL condition
10 parallel forall fluid particles 𝑓𝑖 do
11 v∗

𝑓𝑖
= v𝑓𝑖 + Δ𝑡Fadv𝑓𝑖

/𝑚𝑓𝑖

12 v∗
𝑓
= DensitySolverWithGradient(𝑘DFSPH)

13 parallel forall fluid particles 𝑓𝑖 do
14 x𝑓𝑖 (𝑡 + Δ𝑡 ) = x𝑓𝑖 (𝑡 ) + Δ𝑡v∗𝑓𝑖
15 compute rigid-rigid contact
16 update rigid body state with Eq. (4)

17 compute rigid body gradient
ds𝑛+1R
ds0R

with Eq. (6)

18 end

2017]. For the SPH interpolation, we use the cubic spline kernel
[Monaghan 1992] with a support radius of four times the particle
radius. The rest density of the fluids is 1000 𝑘𝑔/𝑚3 while the largest
permissible density and divergence error is 0.05 % and 0.1%. [Bender
and Koschier 2017] is used for simulating fluid viscosity with a
coefficient of 0.1, and [Akinci et al. 2013] is adopted for surface
tension with a coefficient of 0.2-0.5 in our experiments (there is no
viscosity force and surface tension adhesion force between fluid and
rigid bodies) For neighborhood search, we adopt the parallel method
of [Ihmsen et al. 2011]. The contact stiffness is 105 and the friction
coefficient is 0.7 in the SPH-based rigid-rigid coupling if multi-rigid
contact is considered in the scene. For gradient-based optimizer,
we use the SGD with default momentum as 0.5, Adam optimizer
and the ReduceLROnPlateau learning rate scheduler from Pytorch
[Paszke et al. 2019]. For gradient-free optimizer for comparison, we
adopt the CMA-ES and (1+1)-ES methods from Nevergrad library
[Rapin and Teytaud 2018]. We randomize the optimizers with the
same random seed for result reproduction.

7 EXPERIMENTS & EVALUATIONS
In this section, we show the utility of our method in a range of
versatile rigid body control tasks within a coupled fluid-solid system.

7.1 Rigid Body Trajectory Optimization
We first present the application of our differentiable fluid-rigid cou-
pling simulator in the rigid body trajectory optimization tasks where
we design five scenes: water bottle flip challenge, stone skipping,
water rafting, high diving, and on-water billiards.
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(a) Initial guess (b) Ours

(c) CMA-ES (d) (1+1)-ES

Fig. 5. Optimization results of different solvers of the first stage of water
bottle flipping task to make the bottle land on the table without considering
bottle-table collision with its base, namely, rotating 360 degrees. (a): Initial
guess: The bottle freely falls to the ground with zero initial velocity. (b) Our
optimization result with GD, where the bottle meets the goal well. (c)(d):
CMA-ES and (1+1)-ES optimization results, the bottle doesn’t fully meet the
goal.

7.1.1 Water Bottle Flip Challenge. We start with the water bottle
flipping task. As shown in Fig. 2, we define the design variables
as the bottle’s linear and angular velocity 𝑣0, 𝜔0 at the moment of
release, namely p = (𝑣0, 𝜔0). The goal is to land on a user-specified
target position 𝑥∗ with the target orientation 𝑞∗ at a user-specified
time 𝑡∗. For example, to make the bottle land on its base, 𝑞∗ is set
to the corresponding orientation that makes the bottle rotate 360
degrees.

The interaction between the fluid and the bottle involves a large
number of contacts and plays a key part in this task. As [Dekker
et al. 2018] points out, a successful bottle flipping is owing to the
exchange of angular momentum between the sloshing fluid and
the bottle, which serves to decelerate the rotation of the bottle
(Here we show the fast spin motion of flipping an empty bottle as a
comparison in Fig. 6 (left) as a reference). Because the deformation
of the bottle in the process is negligible, we treat the bottle as a

Fig. 6. (Left) Demonstration of fluid-rigid coupling: An empty bottle with
the same optimized initial linear and angular velocity in Fig 5. Without fluid-
rigid interaction, the bottle spins very fast. (Right) Based on the optimization
result of the first stage where we only consider fluid-bottle coupling, we fur-
ther consider the bottle-table collision stage to fine-tune the initial velocity
of the bottle to make it able to stop and stand stably on the table.

rigid body. The collision between the bottle and the table is taken
into account by combining the differentiability of this rigid-rigid
contact and fluid-rigid coupling within our unified differentiable
framework. Because the collision between the bottle and table gives
an abrupt impulse to the motion of the fluid in the bottle, to make
the optimization easier, we split the task into two stages: In the
first stage, we only consider fluid-bottle coupling and optimize the
bottle to reach the target position near above the table. Then in the
second stage, we fine-tune the optimization result by considering
the bottle-table collision and its coupling with fluid. The energy to
be minimized in the first-stage optimization is defined as:

min
p

𝐸 = 𝐸position + 𝐸rotation

𝐸position = 𝑤position∥𝑥𝑛 − 𝑥∗∥2

𝐸rotation = 𝑤rotation∥𝑞𝑛 − 𝑞∗∥2,

(16)

with𝑤position,𝑤rotation being the weight parameters. In the second
stage, we drop the position loss to avoid over-constraint and only
optimize the rotation loss to make the bottle stand stably on the
stable at the end.

We show the first-stage optimized trajectories in Fig. 5 and com-
pare the performance of one gradient-based solver gradient de-
scent (GD) with momentum and learning rate scheduler, and two
gradient-free solvers: CMA-ES and (1+1)-ES, which are standard
gradient-free evolutionary strategies (ES) [Hansen 2006]. We set
𝑤position = 0.1,𝑤rotation = 1.0 in experiments. We normalize the
gradient direction for gradient-based optimization. We only manu-
ally set the initial learning rate as 1.0 for default unless stated for
GD solver, and we adopt the learning rate scheduler to automati-
cally reduce the learning rate once by half based on optimization
performance. The patience of the scheduler is set as 5 for default
unless stated. We can conclude from the results that the reduced
gradient from our differentiable simulator facilitates gradient-based
optimization to converge to the goal much faster than gradient-free
optimizers.

For 3-dimensional rotation, there are multiple optimization paths
to reach the target orientation (multiple optimization paths on the
𝑆3 sphere of unit quaternion), with each path as a local minimum in
the loss landscape. By setting different initial guesses, we are able to
optimize the multiple optimization paths of rigid body rotations by
our method. We show a different trajectory to achieve a 360-degree
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(a) Initial guess (b) CMA-ES (c) (1+1)-ES

Fig. 7. Optimization results of the stone skipping task. (a): Initial guess: The
stone hits water surface without bouncing. (b)(c): CMA-ES and (1+1)-ES
optimization results at the 50th iteration. Our optimized result with GD at
the 50th iteration are shown in Fig. 1. Our method achieves a much faster
optimization speed.

rotation of the bottle in Fig. 6 (right) and use this initial velocity as
a pre-trained result for second-stage optimization.

7.1.2 Stone Skipping. Our second task is stone skipping. Stone
skipping, or stone skimming, is commonly observed in life as an
entertainment activity, in which a flat stone is thrown across calm
water at a high horizontal speed while spinning, and then it bounces
off the water’s surface due to lifting forces from fluid-rigid interac-
tions. In this task, we define the design variables as the linear and
angular velocity 𝑣0, 𝜔0 of the stone at release, namely, p = (𝑣0, 𝜔0).
The goal is to make the stone reach a target position 𝑥∗ at time 𝑡∗
after bouncing off the water’s surface.
Following the settings in [Nagahiro and Hayakawa 2005], we

only consider the fluid-rigid coupling forces in the process without
caring about the fluid surface tension. To avoid the case that the
stone directly flies to the target without hitting and bouncing off the
water, we add a constraint on the range of the vertical component
of the initial linear velocity of the stone. Finally, the energy to be
minimized is defined as:

min
p

𝐸 = 𝑤position∥𝑥𝑛 − 𝑥∗∥2 + _𝐸penalty,

𝐸penalty = max(𝑣0vertical − 𝑣thresh, 0),
(17)

where𝑤position,_ are the weight parameters, 𝑣thresh is the hyperpa-
rameter that upper-bounds the allowed initial vertical speed 𝑣0vertical
of the stone.
We set 𝑤position = 1.0, _ = 1.0, 𝑣0vertical = −5 in the experiment.

We set the initial guess to be the state that the stone cannot success-
fully bounce off the water to let the optimizer explore the proper
design variables to achieve the bounce. We show the initial guess
and the optimized result at the 50th iterations given by GD with
momentum and learning rate scheduler in Fig. 1 and compare the
corresponding results of CMA-ES and (1+1)-ES solvers in Fig. 7.

(a) Initial guess (b) Ours

(c) CMA-ES (d) (1+1)-ES

Fig. 8. Optimization results of different solvers of the water rafting task. (a):
Initial guess: The bunny freely falls to the wave with zero initial velocity. The
target pose is shown in yellow color. (b): Our optimization result with Adam,
which is very close to the goal. (c)(d): CMA-ES and (1+1)-ES optimization
results, the bunny doesn’t fully meet the goal.

7.1.3 Water Rafting & High Diving. Our following two tasks involve
the interaction of rigid agents with a large-scale dynamic fluid
environment: the water rafting of a Stanford bunny, where the
bunny needs to find the optimal initial linear and angular velocity
to help itself to ride on the river flow to reach the target position
and pose; and the high diving of a rigid duck, where it is required to
perform optimal spin to achieve target rotation after rolling in the
pool tomake itself stand on thewave and face forward at the end (We
do not consider rigid-rigid contact here). In the water rafting task,
the design variables and goals are the same as the aforementioned
water bottle flipping task, with the energy defined as Eq. (16) to
make the bunny reach the target and rotate 180° in the vertical y-axis.

Fig. 10. Our gradient-based op-
timization fails to meet the goal
with improper design variable
settings.

In this scene, the fluid-rigid inter-
action strongly affects the rigid
body’s trajectory, and here we
show a failure case as the figure
below if we only intuitively opti-
mize the vertical z-axis angular
velocity and the linear velocity
of the bunny.

In the high diving task, the de-
sign variable is only the initial
angular velocity 𝜔0 of the rigid
agent, namely, p = 𝜔0. The goal
is to match the final orientation
𝑞𝑛 with target orientation 𝑞∗ at
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(a) Initial guess (b) Ours

(c) CMA-ES (d) (1+1)-ES

Fig. 9. Optimization results of different solvers of the high diving task to
make the rigid duck reach target pose when entering the pool. (a): Initial
guess: The duck freely falls to the flow with zero initial velocity. The target
pose is to make the duck stand on the wave and face forward at the end
(rotate 180° on the vertical axis). (b): Our optimization result with GD, where
the duck matches the target standing straight pose the closest. (c)(d): CMA-
ES and (1+1)-ES optimization results.

time 𝑡∗ after rolling in the swimming pool, therefore, the energy to
be minimized is defined as: 𝐸 = ∥𝑞𝑛 − 𝑞∗∥2 . In this scene, the duck
rolls in the water pool, leading to a great influence of fluid dynamics
on rigid motions with a large amount of fluid-rigid interactions.
The results of these two tasks are shown in Figs. 8,9.

7.1.4 On-water Billiards. Finally, we design an on-water billiards
scene where a yellow rigid ball hits a red ball in a water pool, and
we optimize the initial linear and angular velocity of the yellow
ball to make the red ball reach the target position after both rigid-
rigid collision and fluid-rigid interaction. The energy is defined as
𝐸 = ∥𝑥𝑛red ball − 𝑥

∗∥2, and an end-to-end optimization is performed
due to our unified differentiable fluid-rigid coupling simulator.

To sum up, the optimization results of all rigid body trajectory op-
timization tasks and simulation parameters in experiments are sum-
marized in Tabs. 1 and 2. Considering that in some cases gradient-
free methods can achieve good optimization results given enough

(a) Initial guess (b) After

Fig. 11. Optimization result of on-water billiards scene using our method,
where the target position of the red ball after the collision is highlighted
with the dotted circle.

time, we discuss the advantage of our gradient-based method and
compare it with gradient-free methods in Sec. 7.4.5. In addition, the
loss difference at the outset in all loss curves is that we set the same
initial design parameters for different methods but (1+1)-ES and
CMA-ES will add a random offset to the design parameters based
on their initial evolutionary strategies at the outset.

7.2 Self-supervised Learning of Water Bottle Flipping
Control Policy

Learning-based methods that train neural network controllers with
simulation data have also been an important research topic in var-
ious control applications. To demonstrate the applicability of our
work in this direction, we present an example of the self-supervised
learning of a water bottle flipping controller. We integrate our dif-
ferentiable fluid-rigid coupling simulator into a neural network con-
troller, which facilitates the training to be in an end-to-end manner
with the gradient information directly from the simulator.

Specifically, in this task, we fix the initial position and orientation
of the bottle, and the goal of this task is to control the release linear
and rotational speed of the bottle to make it land on the target
position 𝑥∗ with a 360-degree rotation. 𝑥∗ is given by users within
a predefined 3-dimensional area A. We minimize the same energy
as in Eq. 16, despite setting𝑤position = 𝑤rotation = 1.0. We set A a
3D rectangular area with size [0, 5] × [−1, 5] × [0, 5].

We design the network architecture as three dense layers with 32
neurons in each layer and ReLU activations, as shown in Fig. 12. To
generate the training and testing data, we randomly sample 𝑁train +
𝑁test target positions inA. We set 𝑁train = 1000 and 𝑁test = 50. We
set the batch size as 5 and adopt the Adam optimizer [Kingma and
Ba 2014] to train the network, with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8
and a learning rate of 0.01 which is reduced by a factor of 0.5 after
every epoch. We test the model every 50 batches. The convergence
on training and test data of the learning process is shown in Fig. 12.
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Fig. 12. (left): Illustration of this task where the gray block represents the
neural network controller, and the green dashed block shows the predefined
target area. (middle): Convergence on training and test data of the learning
process for the water bottle flipping controller. (right): The corresponding
controller network architecture.

7.3 Closed-loop On-water Inverted Pendulum Robot
Controller

In this example, we demonstrate the extensibility of our differen-
tiable simulator to the two-way coupling of fluid and multi-body
systems. We simulate a 2-dimensional on-water inverted pendulum
robot with the impulse-based multi-body simulation method from
[Bender and Schmitt 2006]. The robot consists of two rigid body
parts: a pole and a cart, and the pole is attached by an unactuated
joint to the cart. Different from previous open-loop tasks, the goal
of this task is to train a closed-loop controller that keeps the pole
balanced on the undulating water surface disturbed by two baffles,
where the controller applies appropriate forces on the cart at reg-
ular intervals. The gradient of the multi-body simulation can be
integrated into our differentiable fluid-rigid coupling framework,
with computational details in the supplementary.

7.3.1 Experiment Settings. Specifically, we train a closed-loop con-
trol policy a𝑡 = 𝜙\ (s𝑡 ), which takes as input the current state s𝑡 of
the task and outputs an action vector a𝑡 at time step 𝑡 , and a𝑡 is gen-
erated every 𝑁 time steps. We represent the control policy 𝜙\ as a
neural network parameterized by \ consisting of three dense layers
with 16 neurons in each layer and ReLU activations at the end of the
first two layers. The state vector s𝑡 includes the position, rotation,
linear and angular velocities of each part of the inverted pendu-
lum robot. The action vector a𝑡 , or control signals, includes the
horizontal and vertical accelerations applied to the cart, which are
limited in ranges ([−0.5/Δ𝑡, 0.5/Δ𝑡] for horizontal and [−0.5/Δ𝑡, 0]
for vertical). By integrating the policy network with our differen-
tiable fluid-rigid coupling simulator, we are able to train the policy
network in an end-to-end manner, with the loss function introduced
below.
In each epoch during training, we simulate a trajectory with 𝐿

time steps and apply the action a𝑡 from the policy network every 𝑁

(a) Before training (b) After training (Ours)

(c) Test (initial position) (d) Test (baffle motion)

Fig. 13. Control results of the 2D on-water inverted pendulum robot on a
choppy water surface disturbed by two moving baffles, with the control
signal as an external acceleration applied to the cart every 50 time steps.
(a): Before training, the pole quickly loses balance (b): After training with
our differentiable simulator, the robot is able to succeed in the challenging
water flows. (c)(d): We test the model trained with differentiable simulation
with different initial positions and baffle motion parameters. The curve
below shows the loss curve in training (the lower the better), where our
gradient-based method is about an order of magnitude faster than PPO.

time steps, which is set as 50 in our experiment. We can split the
entire trajectory into many short horizons between two sequential
actions, with each short horizon consisting of 𝐿/𝑁 time steps. In
each short horizon, we define the loss function as 𝑙 = 1

2 ∥𝑞
𝑛 −

𝑞∗∥2, with 𝑞𝑛, 𝑞∗ denoting the rotation of the pole at the end time
step 𝑛 of this short horizon, and the target rotation of the pole
(which corresponds to the upright direction in this task), respectively.
Then we backpropagate the short horizon with our differentiable
simulator to get the gradient of the loss function with respect to
the initial linear velocity 𝑣0 of the cart at the beginning of the short
horizon. The gradient of the loss is then used by a gradient-based
optimizer Adam [Kingma and Ba 2014] to update the parameters
of the policy network. In practice, we adopt the same three-stage
training strategy to both methods: we first train the controller to
keep the pole balanced for a 1𝑠 trajectory, then based on the trained
model, we train the controller to succeed for a 3𝑠 trajectory, then
based on the trained model to further succeed for a 5𝑠 trajectory.
The reason for this curriculum learning strategy is that we find that
compared with directly training the controller on a trajectory with
total time as 5𝑠 , it is more reasonable to make the controller learn
to succeed in easier tasks (e.g., keep the pole balanced from 0𝑠 to 1𝑠)
and then move to harder tasks (e.g., keep balanced from 0𝑠 to 5𝑠).
To generate undulating water surfaces, we place two baffles on

the left and right sides of the pool, and animate the baffles following
a sine motion, with their amplitudes, periods, and initial phases
fixed during training.
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Table 1. Comparison between the performance of gradient-based and gradient-free optimization on all examples in Sec. 7. The "DoFs" and "#P" columns report
the DoFs of the fluid-rigid system (6× rigid body numbers + 3× fluid particle numbers) and the number of design variables in the experiments, respectively.
The "𝐸0" column reports the initial energy at the 0th iteration. The "Optimized 𝐸 Percentage" column reports the optimized 𝐸 as a percentage (0-100%) of the
initial energy 𝐸0. The "Final Step" report the best results in each method when we end the optimization at the same number of iterations. The "50 Iters"
columns report the best results in each method within 50 iterations. We color the values of energy percentage using a green-red color scale: green corresponds
to 0% and red corresponds to 100%.

Task DoFs #P 𝐸0
Optimizated 𝐸 Percentage

Ours CMA-ES (1+1)-ES
Final (%) 50 Iters(%) Final (%) 50 Iters(%) Final (%) 50 Iters(%)

Water Bottle Flip (Fig. 5) 39942 6 5.10 0.0019 0.0040 23.0034 23.0728 13.5363 22.4852
Stone Skipping (Fig. 7) 713103 6 1.36 0.0031 0.0510 0.4339 2.8831 0.1818 0.4887
Water Rafting (Fig. 8) 315468 6 2.32 0.9617 1.2778 18.5667 21.3904 2.8812 4.6056
High Diving (Fig. 9) 468372 3 0.97 0.0596 0.1332 0.6330 2.8138 4.9385 4.9385

7.3.2 Results and Comparisons. To compare ourmethodwith gradient-
free methods, we also solve the task with the state-of-the-art rein-
forcement learning method PPO [Schulman et al. 2017]. For a fair
comparison, we set the same policy network, state, and action for
PPO, and set the reward in training to be the negative counterpart
of 𝑙 . The training results with the three-stage training strategy is
shown in Fig. 13 with stage1, stage2, and stage3 representing train-
ing on 1𝑠 , 3𝑠 , and 5𝑠 trajectories, respectively. Compared with PPO,
our method achieves an order of magnitude faster optimization
speed.

We also test the generalizability of the trained policy network by
our differentiable simulator to unseen fluid environments, where we
change the motion parameters of baffles to generate different water
flows from training and change the starting position of the robot.
Furthermore, though we only train the controller to keep balanced
from 0 to 5𝑠 , in the test it can keep the pole balanced for at least 9𝑠 .
The simulation results are shown in Fig. 13, where our controller
trained with differentiable simulation works well in challenging
water flows.

7.4 Discussions & Evaluations
In this subsection, we provide ablation studies and discussions to
evaluate the efficacy of the design choices made in our approach.

7.4.1 Reduced Gradient Scheme vs. Unstable Complete Gradient
Scheme. We first compare the optimization performance of the re-
duced gradient computational scheme with the complete one in-
troduced in Sec.5. We have observed the instability in computing
the complete gradient of Eq. (7), based on which we propose a
reduced gradient computational scheme Eq. (15) to alleviate the
non-smoothness while obtaining plausible results. We compare the
performance of the reduced and complete gradient computational
scheme (Eqs. (7) and (15)) in the water bottle flip task as an example.
In the experiment, the value of the complete gradient quickly comes
to a large magnitude which causes the gradient to be unusable, as
the results shown in Fig. 14, where our reduced gradient compu-
tational scheme gives plausible gradient directions and optimizes
well. Note that the “plateau” here of the complete gradient is not a

real plateau but fluctuates in the log-scaled plot. On the other hand,
the learning rate is gradually reduced by the scheduler.

7.4.2 Discussion on DiffTaichi. We adopt DiffTaichi (version 1.5.0)
to the Stanford Bunny water rafting scene. However, DiffTaichi
turns out to be hard to accomplish such tasks. Due to the limitation
of source code transformation [Hu et al. 2020], DiffTaichi does not
work well in reverse-mode differentiation to handle the complex
control flow including nested loops and branch statements of the
DFSPH solvers that we use. Then we use DiffTaichi with forward-
mode differentiation. In the forward mode, without our localized
gradient technique, DiffTaichi will consider all the 100k+ fluid parti-
cles in the system and automatically compute the gradient along the
forward simulation. As discussed in Sec. 5.3, directly differentiating
the complete gradient from unrolling the DFSPH computational
graph can lead to gradient explosion issues. In practice, we also
observe that the gradient of fluid-rigid coupling forces generated by
DiffTaichi quickly increases in magnitude as DFSPH solver iteration
goes up in one time step after fluid-rigid contact happens.

7.4.3 Forward-mode Differentiation vs. Reverse-mode Differentia-
tion. In this work, we differentiate the two-way fluid-rigid coupling
system based on a forward-mode differentiation idea. To propose
a reverse-mode differentiation scheme here is non-trivial, where
the difficulty lies in that there is not an explicit first-order optimal
(Karush-Kuhn-Tucker or KKT) system in the DFSPH solver and

Fig. 14. Plot of loss function: Comparison of optimization results of the
proposed reduced gradient scheme and the unstable complete gradient
scheme in the water bottle flipping task.
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Table 2. Overview of simulation parameters and experiment settings of all examples in Sec. 7 except the self-supervised learning water bottle flipping controller.
#𝑁F, #𝑁R denotes the number of fluid and dynamic rigid body particles in the simulation. 𝜌R/𝜌F reports the estimated average density ratio of the rigid
body and the fluid. Δ𝑡 is the average time step of the simulation. 𝑛 is the average number of time steps when reaching the user-specified target time of one
trajectory in optimization iterations. 𝑡forward and 𝑡gradient represents the average forwarding time and gradient computing time in a trajectory respectively.
#𝑁gradient denotes the number of DoFs involved in gradient computation and #𝑁total denotes the total DoFs in the system.

Task #𝑁F #𝑁R 𝜌R/𝜌F Δ𝑡 [𝑠] 𝑛 𝑡forward [𝑠] 𝑡gradient [𝑠] #𝑁gradient/#𝑁total
Water Bottle Flip (Fig. 5) 13312 14048 0.4 3.6 ×10−4 2771 61.7 74.7 33.2%
Stone Skipping (Fig. 7) 237699 807 1.9 1.6 ×10−4 1478 472.6 0.8 0.4%
Water Rafting (Fig. 8) 105154 1850 0.3 3.1 ×10−3 635 125.1 3.9 0.9%
High Diving (Fig. 9) 153389 2733 0.3 7.4 ×10−4 3092 688.0 6.5 0.7%

On-water Billiards (Fig. 11) 87374 2808 0.4 1.1 ×10−3 226 29.3 0.5 0.9%
On-water Inverted Pendulum (Fig. 13) 2871 100 0.2 1 ×10−3 - - - -

how to formulate the adjoint state for gradient computation is un-
clear. As mentioned in Sec. 7.4.2, the reverse-mode differentiation
of DiffTaichi also fails to compute the gradient of the DFSPH solver
with fluid-rigid coupling. Furthermore, theoretically, reverse-mode
differentiation incurs more memory cost than forward-mode dif-
ferentiation since the latter computes the gradient alongside the
forward simulation without the need for one additional backward
pass. So we decide to leave the reverse-mode differentiation as a
future work.

7.4.4 Failure Cases in Gradient-based Optimization. Sometimes, the
gradient-based optimization can stuck in local minimums. Here we
show one failure case in the water rafting task in the rigid bunny
water rafting scene in Fig. 10, where we only optimize the vertical y-
axis angular velocity and the linear velocity. However, the fluid-rigid
interaction in this scene greatly affects the motion of the bunny, so
this optimization setting may make the target unachievable, or the
optimization is stuck at the local minimum.

7.4.5 Comparisons between Gradient-based and Gradient-free Meth-
ods. Compared with gradient-free methods such (1+1)-ES, though
our method requires additional implementation effort, (1+1)-ES may
take a long time to search for a usable result (which may still not
fully meet the goal), while our gradient-based method uses much
less time to meet the goal. This is demonstrated in Figs. 5, 7, 8 and
9. Furthermore, our method facilitates us to integrate our differen-
tiable simulator into other neural networks for end-to-end training.

7.4.6 Comparison with finite difference. To further investigate the
property of our method, we compare the gradient obtained from the
finite difference method with ours. At the beginning of each time
step, we manually perturb the velocity 𝑣 of the rigid body by adding
𝛿𝑣𝑖 to the 𝑖th (𝑖 ∈ {1, 2, 3}) entry of 𝑣 , and compute the gradient
of net fluid-coupling force 𝑓 w.r.t. 𝑣𝑖 as

𝛿 𝑓

𝛿𝑣𝑖
∈ R3, which is then

used to assemble the final finite difference gradient 𝛿 𝑓

𝛿𝑣
∈ R3×3. We

take the stone skipping scene in Sec. 7.1.2 as the test case and use
𝛿𝑣𝑖 = 10−6, 10−8, 10−10m/s, respectively. However, in practice, the
finite difference gradient fails to keep stable, as Fig. 15 shows. We
find that even with a very small perturbation of velocity, the change

of the SPH-based fluid-rigid coupling force can be relatively big
compared with the magnitude of 𝛿𝑣𝑖 , e.g., ∥ 𝑓 ∥ ∼ 5k+N and ∥𝛿 𝑓 ∥ ∼
0.01N when 𝛿𝑣𝑖 = 10−10𝑚/𝑠 , causing ∥ 𝜕𝑓𝜕𝑣 ∥ to be bigger than 108.
The possible reason can be related to the round-off numerical error
in float32-precision SPH-based fluid simulation, which makes finite
difference vulnerable and not able to always give valid gradients
while our method demonstrates good stability.

7.4.7 Sensitivity of gradient calculation to the number of one-ring
fluid particles. To investigate the stability of our localized gradient
computation scheme with respect to particle resolution, we take the
stone skipping scene in Sec. 7.1.2 for testing and adjust the particle
radius to be 0.015(original), 0.012, 0.009, 0.006, 0.005, respectively,
where the total number of fluid particles in the original scene will
range from 200k+ to 6M+. We report the averaged norm of gradients
of all time steps and repeat the experiment at each resolution 5
times. The result in Fig. 16 shows that the magnitude of the gradient
contributed from the one-ring neighbor fluid particles is bounded,
where the gradient only changes by ∼ 15% when the number of
one-ring neighbor fluid particles is 5× more, so we believe particle
resolution does not harm the stability of our method.

Fig. 15. Plot of the norm of gradient obtained from finite difference method
with different 𝛿𝑣𝑖 and ours. The finite difference gradient fails to keep stable
while our method demonstrates good stability.
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Fig. 16. Plot of the averaged norm of our gradient of fluid-rigid coupling
force to rigid velocity 𝜕𝑓

𝜕𝑣
, where the magnitudes of gradients are bounded

and increase slowly when particle resolution increases rapidly.

7.4.8 Influence of continuously varying initial conditions. Given the
non-linear and non-convex nature of the optimization tasks, dif-
ferent initial guesses might converge to different local minimum
results to achieve the goal for complex tasks. To investigate the
sensitivity of our optimization results with the choice of different
initial conditions, we choose to continuously vary the initial condi-
tions of the bottle flip scene in Sec. 7.1.1 as a test case. We fix zero
initial linear and angular velocities and sample 5 initial positions
and rotations on a continuous parameterized curve as shown in
Fig 17(top). We run the optimization with these different initial
settings and record the value of the design parameters 𝑣0, 𝜔0 along
the optimization process to get their trajectories. The results in Fig
17 show that each initial setting converges to a solution to meet the
same goal of reaching the same target position and a 360° degree
rotation in the horizontal z-axis with the final loss less than 1e-2,
and the optimization trajectories of 𝑣0 change continuously with
varying initial conditions. It is worth noting that when dealing with
3-dimensional rotation, there may be multiple optimization paths
(local minimums) to achieve the desired rotation. As a result, it is
observed that the optimized angular velocities for the 1st and 5th
initial conditions differ from those of the other initial conditions
with varying x-axis components while still meet the goal. Thus,
We believe our optimization results are not overly sensitive to the
choice of initial guesses from our experiments.

8 CONCLUSIONS
In this paper, we propose a novel differentiable particle-based two-
way fluid-rigid coupling simulator for solving rigid body control
tasks. To address the differentiability of the couple fluid-rigid system,
we utilize the SPH methods to achieve a unified representation for
both fluids and solids using particles, which makes the system easier
to differentiate. To tackle the challenge of differentiability and high
computational cost due to the high DoFs of fluid dynamics, after in-
vestigating the instability in gradient computation, we propose that
it is not necessary to consider every detail of fluid motion but only
take into account the fluid near the rigid boundaries in differentiat-
ing fluid-rigid coupling. This leads to a stable and efficient localized
gradient computation scheme by focusing on the fluid particles that
neighbor the rigid body particles. In practice, we also propose a
reduced gradient formula for alleviating the instability in gradient
computation. Our differentiable fluid-rigid simulator enables the
use of gradient-based optimization methods in a diverse range of
rigid body control tasks and demonstrates its efficacy compared

Fig. 17. (top): Five sampled continuously varying initial conditions of bottle
flip and the corresponding optimization energy curve. Each initial setting
converges to a solution to meet the same goal. (bottom): The 3-dimensional
trajectories of design parameters 𝑣0 and 𝜔0 in the optimization process of
different initial conditions.

with gradient-free methods and reinforcement learning. We also
demonstrate the extensibility of our method to the control of multi-
body systems and multi-rigid contacts within a coupled fluid-rigid
system. We believe our work will inspire further exploration in the
field of differentiable simulation and the differentiable control of
high-DoF systems.

Limitation and future work. There is some room to improve our
work and other ideas that are worth further study. First, surface
tension and boundary friction forces and their gradient can be con-
sidered in the fluid-rigid coupling simulation. Second, our method is
based on DFSPH, which iteratively solves fluid pressure projection
with density and divergence solvers, while another type of SPH
method IISPH [Ihmsen et al. 2014] and pressure boundary method
[Band et al. 2018a] solves the coupled fluid-solid system as a unified
linear system. How to differentiate the solving of this large-scale
linear system to build another type of particle-based fluid-rigid cou-
pling simulator can be explored. Third, the differentiability of grid-
based two-way fluid-rigid coupling is also an interesting research
topic. We will also consider generalizing our trained bottle-flip con-
troller and on-water inverted pendulum controller to other SPH
methods. Fourth, It could be valuable to conduct a further theo-
retical investigation into the problem of gradient explosion in the
naive general differentiation scheme. Another challenge would be
to determine how to achieve a gradient direction that is closer to the
ideal one while still maintaining computational efficiency. Last but
not least, our experiments are made in the simulation environments,
and we would like to further investigate the problems in closing
the sim-to-real gap, e.g., the calibration between real fluid behavior
with simulation parameters, and apply our method to real-world
control tasks, e.g., a real-world robotic bottle flip.
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